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THE SIMULATION OF GAGE MOUNT
RESPONSES IN AIRBLAST TESTS

3 INTRODUCTION

A set of airblast experiments called Mineral Find 1, II, and III were completed on 24
April 1990. The data collected revealed high frequency anomalies which may be due to
either the gage mount or the explosive. In order to gain a better understanding of this
phenomenon, the HULL code was used to simulate one of these events, Mineral Find
II (MFII). The code was run with and without the gage mount to assess the effect of
the mount on the solution. The computed solution with the gage mount is compared
with the experimental results and with another numerical solution. The numerical
solution computed from the HULL code exhibits most features of the experimental
results. The main deficiency in the numerical solution is in the prediction of the
airblast arrival time. All computations in this report were done on the Cray YMP
computer at WES.

4 COMPUTATIONAL PROCEDURES

The materials and geometry of the MFII test were modeled using the material prop-
erties and geometry options in the HULL program. The following materials were used
for this problem.

AIR - with the Doan-Nickle equation-of-state

HMXBRN - burned HMX explosive

SAND - dry Eglin AFLB sand (for soil model)

CONCRT - concrete

SSTEEL - stainless steel

For the MFII test, a spherical charge was located 304.8 cm above the ground. A
gage mounted on a cylindrical steel and concrete platform was located at ground
zero (directly below the center of the charge). A sketch of the initial setup for the
test is given in Figure 1. The gage is located at the origin of the coordinate system.
The gage mount is sketched in Figure 2. The radius of the spherical charge of HMX
explosive was assumed to be 38 cm. The charge consisted of approximately 453 kg
of explosive. Due to symmetry, this problem can be solved as a two-dimensional
axisymmetric problem with a vertical axis of symmetry passing through the center of
the charge. A computational grid must be selected which will both model the initial
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stage of the explosion and also resolve the effects of the explosion on the gage housing.

After several preliminary computations (including attempts to use an adaptive grid

scheme which was developed last year), the 100 x 400 grid illustrated in Figure 3

was selected. The vertical grid lines are clustered near the axis so that there will be

a sufficient number of grid cells along the face of the gage. A close-up view of the

grid near the gage mount is plotted in Figure 4. This same grid was used for both
computations; i.e., with and without the gage mount.

5 COMPUTATIONAL RESULTS

The plotting capabilities of the HULL package were used to examine and compare
the numerical solutions. Since the primary objective was to examine the effect of the
gage mount on the numerical solution, the first plots are at a time when the blast
front is close to the gage. The nature of the solution before the blast front reaches
the gage mount is indicated in Figures 5 through 8. As the blast front nears the gage

mount, no oscillations or ringing in the solution are evident. Only the solution with
the gage mount is included, since the solution without the mount is almost identical.
However, after the blast front hits the mount, there is a distinct difference in the two
solutions. This is evident in the contour plots and pressure histograms along the axis
of symmetry, which axe plotted in Figures 9 through 12. Ringing of the steel casing
is indicated in the pressure histogram in Figure 10. Since the wave length is the same
as the grid spacing, this could very well be a numerical problem rather than an actual

physical phenomena. Without the gage mount, the pressure develops a bimodal form,
as seen in Figure 12. The peaks represent a strong shock transmitted through the soil
and a weaker shock being reflected from the surface of the soil. Figures 13 through 16
further indicate that the same features of the two solutions persist as the two fronts
move in opposite directions. The instabilities in the solution with the gage mount are
still present.

Further comparisons of the two solutions can be made from several station plots
which give the time histories at selected points. The first station plot is at ground
7ero, which is also at the center of the top of the gage mount. The effect of the
steel cylinder is indicated by the higher pressures in Figure 17 when compared with
Figure 18. In both cases, the oscillations in the solution are due to the presence of
the surface. At 100 cm above ground ",o, the pressure plot, given in Figure 19, is
smooth with no oscillations. At 200 cm above ground zero, there is a sharp blast
front followed by a broader rise in pressure which slowly dissipates, as indicated in

Figure 20. Figure 21 indicates the solution at the edge of the explosive charge. Only
one set of figures is included at the stations above ground zero, since the solutions
with and without the gage mount were almost identical. The fifth station was located
at ground level and 3.75 cm from ground zero. In the problem with the gage mount,
this was at a point on top of the concrete housing. Surprisingly, there is very little
difference in the two time histories plotted in Figures 22 and 23. At station six, which
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is on the surface of the soil in both cases, the two solutions are very similar, as can

be seen by comparing Figures 24 and 25. As is apparent in the contour plots and
histograms, the real diir..:rence in the two solutions is in the steel cylinder. The station
plot at a point .ea, the center of the steel casing is given in Figure 26. The high
frequency osciliations in the pressure record are clearly evident. As with the spatial
oscillations of the casing mentioned previously, this is probably a numerical problem.
When the gage mount is not present, these oscillations do not appear in the station
"-)lOL. That case appears in Figure 27. In an attempt to follow the solution as the
atiock wave passes through the gage mount, a station was placed at a point in the
concrete housing below the steel cylinder. At that point, the solution with the gage
mount has completely deteriorated, as indicated in Figure 28. However, even without
the housing, some signs of instability in the solution can be seen. The latter case is
plotted in Figure 29. This again is a numerical artifact of the shock wave passing into
the coarsely gridded region near the bottom of the computational field, compounded
by reflections off of the lower boundary.

The numerical results are qualitatively what would be expected, and match the
general features of the experimental findings. However, there is still considerable dis-
crepancy between the numerical and experimental data. A comparison of the pressure
time histories is contained in Figures 30 through 32. The HULL code predicted a much
later time-of-arrival than the experimental data. In all of the comparisons, the HULL
pressure graph has been shifted by .15 ms, to match the arrival time of the experimen-
tal data. The two curves plotted in Figure 30 are from computed results. One is from
the HULL calculations of this report (a rescaling of Figure 17) and the other is from
Reference 1]. The latter solution was computed using a one-dimensional method to
simulate the blast until the blast front reached the surface at which time the solution
was continued using the SHARC hydrodynamics code. The curves plotted in Figures
31 and 32 are comparisons of the HULL calculations with the the MFII experimental
data, taken from gages near ground zero. The wave form from the HULL calculations
is similar to the other results and the computed pressures are within the uncertainty
interval of the experimental data. In particular, the frequencies reported in the ex-
perimental data also appear in the computations using the HULL code. Figure 33
contains a comparison of the corresponding impulse values. The larger impulse values
in the HULL computations are due to the dissipation of the wave front. This does not
occur with the SHARC calculation since it uses a less dissipative numerical algorithm
and the computations were started with a high-resolution one-dimensional solver.

Both the solution with and without the gage mount were computed using the
default stability factor of STABF = 0.75. However, due to the higher sound speed
in steel, the solution with the gage mount took over twice as much computer time.
Table I lists the computer resources for computing each solution from t = 0.0 to t
= 1.2 msec. The time step was essentially constant over the entire computed time
interval, so the time needed to compute the solution over any other time interval
would be proportional to the values in the table.
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Problem Prob. No. Time Step No. of Cycles CPU Time

With Gage Mount 100 6.13E-7 sec. 1970 2 hr. 7 min.

No Gage Mount 101 1.38E-6 sec. 845 50 min.

Table 1: Computational Resources at t = 1.2 msec.

6 CONCLUSIONS

The computations described in this report verify the fact that the HULL code can be

used to model explosive events such as MFII. There is still a need for improvement in

the accuracy of the computed results. Although some improvement could be achieved

by simply increasing the number of grid points, preliminary computations on a coarse

50 x 100 grid gave results which were fairly close to the calculations reported here.
Therefore, attempting to match the experimental data by simply increasing the num-
ber of grid points would soon lead to a problem that would be too large for even the
Cray computer. There are other options which could lead to improved results, but
these would involve major modifications of the code. For example, the grid points
could be used more efficiently by allowing for local grid refinement in regions where
there are large solution gradients. A second alternative would be to replace the fi-

nite difference algorithm in HULL with a nondissipative algorithm which can more
accurately simulate airblast phenomena. Both local grid refinement and the use of
nondissipative upwind difference schemes have proven very successful in the solution
of difficult problems in aerodynamics, such as the computation of hypersonic flow.
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14



Pressure Vertical Histogram
Vertical Cross Section at Radius 2.50x10- cm (I " 1)

170

120.0 AY- 3.14 160
Min - 7.17x10W

Max = 6.07x10 150

100.0 140

130.

80.0 - 120

110

S60.0 10
90 V

40.0 807

S~70-

q 20.0 60.

50-

So0.0 40

30

-20.0 20

10

-40.0

1-
-60.0, ,0.0 7.0 14.0 21.0 28.0 35.0 42.0 49.0 56.0 6S.0 70.0

dynes/cm 2 (x 106 )

Figure 6. Pressure histogram at t = 0.6 msec.
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Figure 8. Pressure histogram at t = 0.75 msec.
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Figure 9. Pressure contours and velocity vectors at t 1.0 msec,
with gage mount included.
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Figure 18. Pressure time history at ground zero,
in free-field (no gage mount).
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Figure 19. Pressure time history at 100 cm above ground zero.
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Figure 20. Pressure time history at 200 cm above ground Zero.
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Figure 21. Pressure time history near surface of chz rge.
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Figure 22. Pressure time history at 3.75-cm ground range,
on concrete ring of gage mount.
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Figure 23. Pressure time history at 3.75-cm ground range,
with no ga.ge mount.
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Figure 24. Pressure time history at 10.0-cm ground range,
with gage mount included.
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Figure 25. Pressure time history at 10.0-cm ground range,
with no gage mount.
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Figure 26. Pressure time history at 5.0 cm below ground zero,
near center of steel cylinder.
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Figure 27. Pressure time history at 5.0 cm below ground zero,
with no gage mount.

36



ST"- a X0_ 0.00 Y'Io- -1i.0O
4.00E+08 MAX- 3.73E+08 Mh-,-1.150C+07

-154E+06
('4
UZ 3.0w08+4

2.OE..06

A.1.50E+W 6

1.00C4086

5-00E407

-2.-ME-07

-5.00E+07 ,
0.00 0.20 0.40 0.60 0.10 1.00 1.20 I.4 tio 1.0 L.

T (MSEC)
AJRBLAST MODEL Problem 100.0000

3.00E+04
STA- 8 XO-- 0.00 YO-- -15-00:

2.70E+04 -- -

2.4 _"04
•4%
ul 2.10(404

UI)

o 1.80E+04

!I 1.50E+04
4L

S1.20E+04

9.OOE+03 -

6.00E+03 -

3.OOE+03.

0.0
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1,60 1, 0 2.0

T ( S"C)
AIRBLAST MODEL Problem 100.0000

Figure 28. Pressure time history at 15.0 cm below ground zero,
in concrete housing below steel cylinder.
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Figure 29. Pressure time history at 15.0 cm below ground zero,
with no gage mount.
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Com arisons Between Hull Airblast Calculation
AUX 1-D/SHARC Calculation (MASTIN03.PLT)
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Figure 30. Comparison of HULL-calculated pressure time history

at ground zero with results from a SHARC calculation.

The HULL solution has been shifted to match the

experimental time-of-arrival.
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Comparisons Between Hull PredictiOUs

Anid Mineral Find 2 Airblast DataL (MASTtNO' PLT)
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Figure 31. Comparison of HULL-calculated pressure time history

at ground zero with results from the Mineral Find II, gage

no. 47. The HULL solution has been shifted to match

the experimental time-of-arrival-
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Comparisons Between Hull Predictions
And Mineral Find 2 Airblast Data (MASTIN02.PLT)
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Figure 32. Comparison of HULL-calculated pressure time history

at ground zero with results from the Mineral Find I1, gage
no. 48. The HULL solution has been shifted to match

the experimental time-of-arrival.
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Figure 33. Pressure impulse time history at ground zero from
HULL and SHARC calculations compared with results of the

Mineral Find II experiment. The HULL solution has been
shifted to match the experimental time-of-arrival.
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